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Abstract 

A discussion is given of certain electromagnetic fields associated with charges moving 
with the velocity of light which are associated with zero magnetic field, and the creation 
of charge. The stress energy tensor associated with charge creation is also discussed and 
it is shown that the stress energy tensor includes a term which may be interpreted as a 
shear. 

1. Introduction 

Recently, Bonnor (1969) has discussed the motion of charge systems 
moving with the speed of light. It  is the purpose of this paper to show that, 
if  charge creation is allowed, solutions of  Maxwell's modified equations 
exist which involve the flow of  charge with the speed of light. Before 
proceeding to the analysis, the equations governing an electromagnetic 
system with charge creation will be recapitulated. These are due to 
Watson (1945), and involve the introduction into Maxwell's equations of  
a scalar creation field N. (In the following a factor/~o has been introduced 
so as to give N the same dimensions as H, the magnetic field.) The Georgi 
system of units and the usual notation are used. Maxwell's equations 
modify to 

0D 
V x H - ~ -  = J - V N  (1.1a) 

1 ON 
V . D  = p q c2 0t (1.1b) 

0B 
V x E + ~ - - O  (1.1c) 

V . B = 0  (1.1d) 

The energy density of  the field is 

�89 E 2 +/x  0 H 2 +/z  0 N 2) (1.2a) 
413 
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The Poynting vector giving the energy flux becomes 

E • H - EN (1.2b) 

and the equation of motion of a charged particle with momentum p is 
given by 

~ =  q(E + v • B +/~0 vN) (1.2c) 

v being the velocity of the particle. A discussion of the energy momentum 
stress tensor does not seem to have been given previously, and this is given 
in Appendix 1. 

The rate of charge creation per unit volume is 

1 02N 
V2N 

C 2 0t 2 

Suppose now that it be assumed that the charge system is moving with 
velocity cfi where fi is a unit vector which does not change with time. 
This will hold for a fixed direction, the direction radially out from a fixed 
line, or the direction radially out from a fixed point. Then 

a = cp~ (1.3a) 

and 
0 = D + c-~{fi • H + fiN} (1.3b) 

Equation (1.3b) follows from equation (1.2c) and the fact that if a particle 
is travelling with the speed of light in a fixed direction, its momentum does 
not alter. For convenience, E and B are replaced everywhere by D and H. 

The energy density of the field is 

1 [D 2 V~o N ~) \-~0 + I~O H2 + 

and using equation (1.3b), this becomes 

�89 • Hi 2 + M s + 2N 2} (1.4a) 

The Poynting vector becomes 

1 
~ { I - I  x [(fi x H) + fiN] + (fix H + fiN)N} 

J and O may be eliminated from equations (1.1a), (1.1b) and (1.3a) to give 
an equation 

OD {V 10N'~ 
V • H - - - ~  = 1"  . D - ~ - ~ j c f i - V N  (1.5) 
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It will be seen from equations (1.3b) and (1.5) that D can be expressed as 
the sum of DI (for which N is zero) and D2 (for which H is zero). It is fields 
of the first type which have been discussed previously (Bonnor, 1969; 
Chambers, 1970) and accordingly only fields of the second type, for which 
H is assumed zero, will be discussed here. Composite fields follow by 
addition. 

2. Longitudinal Electric Fields 

When H is zero, equation (1.3b) becomes 

D = - c  -l Nfi (2.1) 

and equation (1.1d) is satisfied identically. D is parallel to fi, the direction 
of flow and the field is therefore of longitudinal electric type. 

Equation (1.5) becomes 

1 0 ^ 10NIl 
c N ( N U ) + c - ~  + V N +  [V.(Na)] f i=0 

that is 
_2 I 

0 : f i  + 2VN + N~7.fi)fi = 0 (2.2) 
c dt 

fi does not vary with time. 
Equation (1.1c) becomes 

V • E --- 0 (2 .3)  

The current density J is given by 

1 0N^ 
c 0t u - VN = �89 fi (2.4) 

The energy density becomes t*0 N2 and the Poynting vector 

\ ~ol 

Consider now what happens when ~ is one of the three unit vectors referred 
to previously. 

2.1. Flow in Direction of the z Axis 

In this case fi = k, unit vector in the z direction. From equation (2.3) it 
follows that 

V x Ek  = - k  •  (2.1.1) 

and so E is independent of x and y and depends on z and t only. 
Thus equation (2.2) becomes 

2 ON. ON 
c ~ ~ + 2~-zk = 0 (2.1.2) 
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It follows immediately that - 

wheref i s  an arbitrary function 

The energy density is 

and the Poynting vector 

z)] 

(2.1.3) 

(2.1.4) 

The current density is given by 

J = �89 fi = �89 k 

= 0 (2.1.5) 

and so the charge density is also zero. 
The charge density creation rate is 

1 02N 02N 1 0 2 N  
V 2 N  {7 2 0 t  2 = 0z 2 c2 0t 2 (2.1.6) 

Thus the charge density rate is zero, in apparent contraction to the original 
hypothesis. 

However, the creation field defined by equation (2.1.3) may be regarded 
as associated with charge creation at infinity, in exactly the same way as a 
uniform electrostatic field may be regarded as caused by charges at infinity. 
This will be shown in Appendix 2. 

2.2. Flow Radially Out From the z Axis 

In this case fi = f and it follows from equation (2.3) that 

0 = V OE ~ 1 0 E  
x (E~)=~-z~  - r ~ k  (2.2.1) 

where cylindrical polar coordinates are used. Thus E is independent of z 
and ~ and so depends on r and t only. 

Now V . f  = r -1, and so equation (2.2) becomes 

20N~ + N f = o  
c - ~  r (2.2.2) 
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It follows immediately that 

N = f [ t  - (r[c)] (2.2.3) 
rl/2 

wherefis an arbitrary function. 

The energy density is 

and the Poynting vector 

'<~ ql' 7t t-Th 

The current density is given by 

S = �89 a = kN(V.e) ~ 

__ 1 N~= l f [ t -  (r/c)]f (2.2.5) 
2 r 2 r 3/2 

and the charge density by 

The charge density creation rate is given by 

1 0 Z N  1 O [rON] 1 a2N 
V Z N  e z Ot z - r o r l ,  ~-r,] c z Ot 2 

= 0  (2.2.6) 

Here again the charge density creation rate is apparently zero. However, 
consider the flow of charge per unit length out of a cylinder of radius a 
whose axis is the z axis. This is given by 

and as a tends to zero this becomes infinite. 
Thus, there is an infinite creation of charge along the z axis. The energy 

per unit length within the cylinder of radius a is given by 

f/~0 f t -  = 2zr/~o f t - dr (2.2.8) 
0 
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The net rate of flow of energy per unit length out of the same cylinder is 
given by 

2rraJ(~o)~[f(t-a)]2= 2"rr J(E~-~) [f(t)]2 (2.2.9) 

when a tends to zero. 

2.3. Flow Radially Out From Origin 
In this case fi = J and it follows from equation (2.3) that 

I aE 0 l aE+ 
0=IT•  rs in~0~ --r'~0 @ (2.3.1) 

where spherical polar coordinates are used. Thus E is independent of 0 
and if, and so depends on r and t only. 

Now, V.f  = 2r -~, and so equation (2.2) becomes 

2aN. ~ 2N~ 
c ~ / ~ + 2  ~+ r =0  (2.3.2) 

It follows immediately that 

1 r 
N = -rf (t - c) (2.3.3) 

wherefis an arbitrary function. 

1 o_ j ( ,  
The energy density is 

and the Poynting vector 

r21. \ 

Thus the energy within a sphere of radius a whose centre is the origin is 
given by 

a 

and the rate of flow of energy out across the surface of this sphere is given 
by 

4 ~ J ( ~ )  [ f ( t - - a ) ]  z (2.3.6) 
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making a equal to zero these will be a source of energy at the origin working 
at the rate 

The energy balance may be discussed in more detail. Consider the 
quantity 

Wo(a, t) = 4rr/z o f t -  r_ dr 
C 

t 

+ 4zr ' 

(2.3.7) 

The first term on the right-hand side of equation (2.3.7) represents the 
energy within the sphere r = a at any time, and the second term represents 
the integral over time of the outflow of energy from this volume. 

Wo(a, t) has the following properties 

Wo(O, t) = 0 (2.3.8a) 

and 

aWo=o 
Ot 

(2.3.8b) 

It may he regarded, therefore, as an inherent energy associated with the 
system within the sphere r = a. An alternative representation is as follows 

0 --co 
(2.3.9) 

a 

= 4rr/~o f [f(_~)]2 dr 
0 

which corresponds to the initial energy density, at infinite time past of  

The current density is given by 

J - �89 fi = N(V.I:) f = N t  
r 

(2.3.10) 
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and charge density by 

the total charge with a sphere of radius a being 
a 

0 

The charge density creation rate is given by 

1 02N 1 0 / / / r  2oN\ 
VZ N c 2 ~t ~ r2 ~r \ Wr ] c2 at 2 

1 ON 
0 (2.3.11) 

,0 
4~-~-cc cos to 

and the total charge within a sphere of radius a is given by 

The value of D is 

Io costo ( t _ r ) ,  4~rrc 

The charge density is 

and there is again apparently no charge creation. 
However, the rate of flow of charge, that is the total current out of the 

sphere of radius a, centre the origin is given by 

I(a)=47ra2[J],=a=4rrf(t -a) (2.3.12) 

This means that charge flows out of the origin at a rate 

I(0) = 47rf(t) 

As an example consider an outflow of charge from the origin at the rate 
Io cos cot. 

The corresponding current density at a distance r is 

I0 cos to[t - (r/c)] f 
4rrr 2 

and the current across the sphere r = a is given by 

Iocosw(t -a ) 
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and of N 

The energy density is 

~cos,o(, ~ t 

~0,~ 2~(, r) 
COS 

The total energy with a sphere of radius a is given by 
a 

W(a)= f 41rr2[ tz~ cos2to(t-r~]dr=l~~ f cos2to(t-r)dr 
o [16r rZ \ c]J 4zr o 

-tz~176 

The Poynting vector is 

~o 1 6 ~ c o s 2  

and the energy flow out across a sphere of radius a is given by 

P(a)=J(~)  12 j~ ( ,  a) 
implying an energy source creating energy at the rate 

P(O) / ( . o ' ~  12 = ~/\~o] ~ c~ tot 

The expression W(a) may be rewritten in the form 

W(a, t) = Wo(a) + Wl(a, t) 
where 

and 

I~o 12 a 
W~ 8,~ 

Wl(a, t) - ~ [sin 2tot - sin 2to 

d W l  tZo 12 C 

_ / z  o 12 C [1 + c o s  2 w  ~o I~l+oos~ , (, a)]} 
= e ( o )  - P ( a )  

(2.3.13) 

(2.3.14a) 

(2.3.14b) 

(2.3.15) 

(2.3.16) 
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Thus, besides the energy associated with the energy balance equation 
(2.3.16) there is an unchanging amount of energy given by equation (2.3.15) 
within the sphere of radius a. It may be remarked that to be consistent 
with the discussion arising out of equation (2.3.7), it is necessary to replace 
cosoJt by exp(-ptZ)cos~t (p > 0) and take the limit as p tends to zero 
afterwards, that is, Hardy's theory of generalised integrals is used (Hardy, 
1904). 

Obviously, a change in sign of c in equation (1.3a) and (1.3b) involves a 
change in the sign of the flow. It can easily be seen that one of the results 
of this is that the expression (2.5) for the Poynting vector is the rate of 
flow of energy in across the surface, instead of the rate of flow out. Corre- 
spondingly, the field is associated with a sink of electric charge at the origin, 
absorbing charge at the rate 4r There will be corresponding inter- 
pretations in Section 2.2, but these will not be discussed here as they are 
fairly obvious. 

Appendix 1 

The energy momentum tensor has not been given by Watson. It may 
however be calculated easily. 

It follows from equation (1.2c) that the force per unit volume is given by 
pE + J x B +/x0JN. Thus the total force on the charge-current system 
within a volume is given by using equations (1.1) by 

~ - ) E +  xE+ x 

+ (V X H-~--~Dt + V N ) •  B + (V.B)H 

+/Xo (V • H - ~ t  + VN)N]d'r (AI.1) 

= f [(V.D) E + (V • E) x D + (V .B)H q- (V x H) • B]d~- 

+ ~  (E X H -  EN)d~- 

N z 
+ f V(~oT~)dr + f V x (NB)d~" (A1.2) 

= f d d .  (T r + T m) 

+ f N2 dd/x 0-~- + f d~  r • (NB) 

lOf + ~ ~ [(E • H) - EA r] dr (A1.3) 

where T ~ and T m are the electric and magnetic stress tensors (Tralli, 1963). 
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Possible interpretations of the various terms are as follows: T ~ and T ~ 
are equivalent to a tension per unit area �89 E2 and �89 along the 
parallel to the electric intensity and the magnetic induction respectively 
and a pressure of the same amount in the directions transverse to them. 
This is, of course, the usual interpretation. The second term is equivalent 
to an isotropic pressure/~0(N2/2). The third term is equivalent to a shearing 
stress across the bounding surface, and the third term to a momentum 
density 

~ ( E  x - EN) H 

In the case discussed in this paper H vanishes and so the shearing stress. 
term vanishes also 

,~l \Co I 
and so ~0 E2 =/zoN 2 and so the momentum density becomes 

v/(/zo 3 Co) N 2 

and the stress system is equivalent to an isotropic pressure �89 N2, together 
with a tension per unit area �89 2 (=�89 E2) parallel to the electric 
intensity, and a pressure per unit area �89 2 in directions perpendicular 
to the electric intensity. The net result of this is a pressure perpendicular 
to the intensity of amount Fo N2 and no net thrust along the direction of 
the intensity. 

Appendix 2 

Suppose that a charge is being created at the point (0, 0, l) and destroyed 
at the point (0,0,- l)  at the r a t e f ( t )  in both cases. Then if R1 = I f -  lkl, 
R2 = If + Ikl, a possible expression for the associated N field is 

1 [F(r2 - ct) F(R,  + et)] 
4-~L- ~R2 ~R-~ J (A2.1) 

(As has been pointed out by Watson (1945) the Nfield can be either outgoing 
or ingoing.) 

Now 
R2, 2 = r2 q: 21z + l 2 (A2.2) 

If  l is much larger than r, that is the singularities of charge creation and 
destruction are at great distances, 

Rl, 2 = l q: z (A2.3) 

and the expression (A2.1) for N gives 

N = 1 [F(I +_ z -  ct) F(I - z + ct)] 
4~'l l + z  l - z  I 

1 I F ( 1  + z - c t )  - F ( I  - z + ct) ~- 0(l_2) ] 
(A2.4) 

z ] 
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Let l tend to infinity in such a way that 

1 F ( I  + z - c t )  - F ( I  - z + ct) 
4rr l 

is finite. 
Equation (A2.4) 

and making I infinite z) 
Thus, in an N field progressing with the velocity of light in the positive z 
direction may be thought to be associated with charges being created and 
destroyed at infinity. 
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